1,065 research outputs found

    Electric power network oligopoly as a dynamic Stackelberg game

    Get PDF
    Over the last two decades, the electricity industry has shifted from regulation of monopolistic and centralized utilities towards deregulation and promoted competition. With increased competition in electric power markets, system operators are recognizing their pivotal role in ensuring the efficient operation of the electric grid and the maximization of social welfare. In this article, we propose a hypothetical new market of dynamic spa- tial network equilibrium among consumers, system operators and electricity generators as the solution of a dynamic Stackelberg game. In that game, generators form an oligopoly and act as Cournot-Nash competitors who non-cooperatively maximize their own profits. The market monitor attempts to increase social welfare by intelligently employing equi- librium congestion pricing anticipating the actions of generators. The market monitor influences the generators by charging network access fees that influence power flows to- wards a perfectly competitive scenario. Our approach anticipates uncompetitive behavior and minimizes the impacts upon society. The resulting game is modeled as a Mathemat- ical Program with Equilibrium Constraints (MPEC). We present an illustrative example as well as a stylized 15-node network of the Western European electric grid

    Association between congenital toxoplasmosis and preterm birth, low birthweight and small for gestational age birth.

    No full text
    OBJECTIVE: To determine the association between congenital toxoplasmosis and preterm birth, low birthweight and small for gestational age birth. DESIGN: Multicentre prospective cohort study. SETTING: Ten European centres offering prenatal screening for toxoplasmosis. POPULATION: Deliveries after 23 weeks of gestation in 386 women with singleton pregnancies who seroconverted to toxoplasma infection before 20 weeks of gestation. Deliveries after 36 weeks in 234 women who seroconverted at 20 weeks or later, and tested positive before 37 weeks. METHODS: Comparison of infected and uninfected births, adjusted for parity and country of birth. MAIN OUTCOME MEASURES: Differences in gestational age at birth, birthweight and birthweight centile. RESULTS: Infected babies were born or delivered earlier than uninfected babies: the mean difference for seroconverters before 20 weeks was -5.4 days (95% CI: -1.4, -9.4), and at 20 weeks or more, -2.6 days (95% CI: -0.5, -4.7). Congenital infection was associated with an increased risk of preterm delivery when seroconversion occurred before 20 weeks (OR 4.71; 95% CI: 2.03, 10.9). No significant differences were detected for birthweight or birthweight centile. CONCLUSION: Babies with congenital toxoplasmosis were born earlier than uninfected babies but the mechanism leading to shorter length of gestation is unknown. Congenital infection could precipitate early delivery or prompt caesarean section or induction of delivery. We found no evidence for a significant association between congenital toxoplasmosis and reduced birthweight or small for gestational age birth

    Tamm-like states in finite antidot lattices

    Get PDF
    Transport properties of finite antidots arrays, with large lattice parameters and electron densities, may be roughly understood from a semiclassical approach. For weak magnetic fields, commensurability effects between the antidot spacing and the cyclotron radius are present with interference patterns superimposed on the magnetoresistivity. For higher magnetic fields, transport through edge states becomes relevant. In the present work, we discuss a completely different behavior that should occur in the quantum limit, for short lattice parameters and small electron densities. The key feature is the formation of surface Tamm-like states within the gap of the lowest bulk bands of a finite antidot lattice. The surface of a finite antidot superlattice may act as an isolated quantum ring, a coupler of the superlattice to the contacts, or a barrier between the bulk of the antidot lattice and the contacts, as a function solely of the applied magnetic field.643art. no.3531

    Fluctuations, dissipation and the dynamical Casimir effect

    Full text link
    Vacuum fluctuations provide a fundamental source of dissipation for systems coupled to quantum fields by radiation pressure. In the dynamical Casimir effect, accelerating neutral bodies in free space give rise to the emission of real photons while experiencing a damping force which plays the role of a radiation reaction force. Analog models where non-stationary conditions for the electromagnetic field simulate the presence of moving plates are currently under experimental investigation. A dissipative force might also appear in the case of uniform relative motion between two bodies, thus leading to a new kind of friction mechanism without mechanical contact. In this paper, we review recent advances on the dynamical Casimir and non-contact friction effects, highlighting their common physical origin.Comment: 39 pages, 4 figures. Review paper to appear in Lecture Notes in Physics, Volume on Casimir Physics, edited by Diego Dalvit, Peter Milonni, David Roberts, and Felipe da Rosa. Minor changes, a reference adde

    Noncommutative cosmological models coupled to a perfect fluid and a cosmological constant

    Full text link
    In this work we carry out a noncommutative analysis of several Friedmann-Robert-Walker models, coupled to different types of perfect fluids and in the presence of a cosmological constant. The classical field equations are modified, by the introduction of a shift operator, in order to introduce noncommutativity in these models. We notice that the noncommutative versions of these models show several relevant differences with respect to the correspondent commutative ones.Comment: 27 pages. 7 figures. JHEP style.arXiv admin note: substantial text overlap with arXiv:1104.481

    Identifying Variability in Process Performance Indicators

    Get PDF
    The performance perspective of business processes is concerned with the definition of performance requirements usually specified as a set of Process Performance Indicators (PPIs). Like other business process perspectives such as control-flow or data, there are cases in which PPIs are subject to variability. However, although the modelling of business process variability (BPV) has evolved significantly, there are very few contributions addressing the variability in the performance perspective of business processes. Modelling PPI variants with tools and techniques non-suitable for variability may generate redundant models, thus making it difficult its maintenance and future adaptations, also increasing possibility of errors in its managing. In this paper we present different cases of PPI variability detected as result of the analysis of several processes where BPV is present. Based on an existent metamodel used for defining PPIs over BPs, we propose its formal extension that allows the definition of PPI variability according to the cases identified.Ministerio de EconomĂ­a y Competitividad TIN2015-70560-RJunta de AndalucĂ­a P12-TIC-1867Junta de AndalucĂ­a P10-TIC-590

    Tuning ultrafast electron thermalization pathways in a van der Waals heterostructure

    Get PDF
    Ultrafast electron thermalization - the process leading to Auger recombination, carrier multiplication via impact ionization and hot carrier luminescence - occurs when optically excited electrons in a material undergo rapid electron-electron scattering to redistribute excess energy and reach electronic thermal equilibrium. Due to extremely short time and length scales, the measurement and manipulation of electron thermalization in nanoscale devices remains challenging even with the most advanced ultrafast laser techniques. Here, we overcome this challenge by leveraging the atomic thinness of two-dimensional van der Waals (vdW) materials in order to introduce a highly tunable electron transfer pathway that directly competes with electron thermalization. We realize this scheme in a graphene-boron nitride-graphene (G-BN-G) vdW heterostructure, through which optically excited carriers are transported from one graphene layer to the other. By applying an interlayer bias voltage or varying the excitation photon energy, interlayer carrier transport can be controlled to occur faster or slower than the intralayer scattering events, thus effectively tuning the electron thermalization pathways in graphene. Our findings, which demonstrate a novel means to probe and directly modulate electron energy transport in nanoscale materials, represent an important step toward designing and implementing novel optoelectronic and energy-harvesting devices with tailored microscopic properties.Comment: Accepted to Nature Physic
    • …
    corecore